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Thermal Disorder, Fluctuations, Growth and
Fragmentation of Finite One-Dimensional Atomic
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Ordering in one-dimensional atomic chains is studied using computer
simulation. We find that dense ordered chains may exist if the system is cold
enough and not macroscopically long. Growth of finite length chains from the
vapor and by vapor exchange between chains begins rapidly, then slows down
exponentially in time. As temperature rises density fluctuations increase, caus-
ing the chains to fragment. Independent of fragmentation, disordering begins
at the ends, a condition similar to the precursor of edge and surface melting
in two and three dimensions. The chemical potential of finite ordered chains is
a function of length and temperature, due to the competition between attrac-
tion and internal thermal excitation. Equilibrium of chains coexisting with
one-dimensional vapor produces a distribution of sizes, peaked at a tempera-
ture dependent chain length. Several results may be relevant to experimental
studies of adsorption on carbon nanotubes.
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1. INTRODUCTION

Certain current experimental studies suggest the possibility of quasi-
one-dimensional solid states in films adsorbed on carbon nanotubes.(1−9)

Such phenomena may appear to conflict with well known proofs of the
impossibility of one-dimensional condensed phases. However, condensed
states of finite length are not excluded, and the present study explores
their growth and equilibrium lengths.
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The basic proof is given in Section 149 of Landau and Lifshitz’
Statistical Physics.(10) The argument, as simplified by Mattis,(11) posits
heuristically that separate one-dimensional phases cannot exist, for if there
were a condensed phase of N atoms, it could be broken at (N −1) places,
thereby contributing a term of order log N to the free energy. Since the
energy e of a rupture is of order unity, a break in a long chain contrib-
utes a negative term in the free energy at finite temperature. This drives
an increasing number of breaks, so that segments of macroscopic length
cannot exist.

Van Hove,(12) for multi-neighbor interactions, and Takahashi,(13) for
the nearest-neighbor interactions, showed that the density is a continuous
monotonic single-valued function of the pressure in the thermodynamic
limit, hence there can be no separate phases. Mattis(11) summarizes the
results, “at most, condensed clusters can exist provided they are not mac-
roscopically long.” Several additional conditions enable a system to escape
the restriction. These include certain interaction potentials such as long
range forces, or in the case of momentum condensation, external fields.(14)

An obvious condition which escapes the simple Landau restriction is that
a finite chain can remain condensed at low temperature T <T0, where

kT0 = e

ln N
. (1)

Equation (1) pertains to arrays without internal excitations. It is therefore
interesting to examine how internal modes may affect the stability of finite
arrays.

Some related aspects of our present work, specifically one-dimensional
ensembles of hard rods, continue to excite significant interest. Various
models of the one-dimensional system and their dynamics have recently
been studied by density functional theory and analytic methods.(15−29)

These investigations use pair interactions as an excluded volume (hard
rods or hard spheres). Zhang(19) has given a density functional method
finding a form of “crystallization” in a system of one-dimensional hard
rods with a periodic interaction. Truskett et al.(21) have published their
work on density fluctuations in a many body system and gave an example
of the one-dimensional hard rod problem. Piasecki and Peliti(22) derived
the harmonic properties of hard-sphere crystals in a one-dimensional
model. Kaup and Paine(23) reports a closed form solution of the one-
dimensional Born-Green-Yvon equation for a hard-rod fluid. Our work is
distinctive in that it studies finite one-dimensional atomic systems with dis-
persion forces. Punnathanam and Corti(24) studied the nucleation theorem
in one-dimensional arrays. Marconi and Tarazona(25) studied the dynamic
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density functional theory for fluids and gave one-dimensional examples.
Other examples of recent work on one-dimensional statistical mechanics
are offered by Hodak and Girifalco(27−29) applying quasi-one-dimensional
arrays of C60 encapsulated in carbon nanotubes.

2. METHOD FOR A FINITE SYSTEM BOUND PERIODICALLY

We test the theories by Monte Carlo computer simulation of finite
atomic chains. First, we use a canonical ensemble (NVT) with peri-
odic boundary conditions to measure the bulk modulus of the chain.
The interaction potential is a Lennard–Jones (LJ) interaction, with 12, 6
exponents(30) and reduced variables are used throughout.(31) The reduced
variables are distance x∗ = R/σ and temperature t∗ = kT /ε, where σ and
ε are the LJ parameters. The calculations are for dimensionless internal
energy U/NkT , pressure PL/NkT , heat capacity CL/Nk, and bulk mod-
ulus BL/NkT . The internal energy is an ensemble average of the pair
interactions plus the ideal gas contributions and the pressure is the same
for the average of the virial. The heat capacity is the average of the
energy fluctuations and the bulk modulus is the average of the pressure
fluctuations. To cross-check our simulations, we did quasiharmonic lat-
tice dynamics with periodic boundary conditions on 100 particle systems
at several temperatures. We found good agreement between the calculated
compressibilities with those computed by the simulations.

We studied finite chains containing 50, 100, and 1000 molecules, and
searched for systems where the pressure is nearly zero and the compress-
ibility is positive. These conditions give the average density of the sta-
ble configuration for that temperature. For these condensed clusters, we
computed the probability of fluctuations in density(21,32) from the average
density using

P(n)dn= (2πσ0)
−1/2e−(n−nav)2/2σ 2

0 dn (2)

and the density dispersion is

(n−nav)
2 =n2

av(kT /BL).

We tested for density fluctuations in a finite chain by measuring the bulk
modulus in the simulation. In this set of simulations, we denied the sys-
tem free ends by the use of periodic boundary conditions. The results of
Eq. (2) for a 100-atom chain in a range of reduced temperatures are given
in Table I and plotted in Fig. 1. The probability of a density fluctua-
tion large enough to form a break in the 100-atom chain is quite low for
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Table I. Density fluctuations during the simulations of 100

atom chains, at reduced temperatures t * = 0.10 to 0.16

t∗ (�n∗)2
∫ ρc

0 P(n∗)dn∗

0.10 0.0496 0.0526
0.11 0.0427 0.1685
0.12 0.1009 0.1685
0.13 0.0975 0.1611
0.14 0.1172 0.1894
0.15 0.4525 0.3669
0.16 1.612 0.4681

The compressibilities are the results found by the corresponding sim-
ulations. For the purposes of comparison, the lower limit was taken
to a fluctuation with density less than one half the average density.

Fig. 1. Plots of Eq. (2) for the probability of density fluctuations with density for a range
of temperatures.

reduced temperatures below t∗ =0.12. However, if the chain is macroscop-
ically long there is substantial probability that sufficiently large fluctua-
tions will occur, in agreement with van Hove.(12) In these calculations the
identification of a break is somewhat arbitrary, for the density fluctuations
are transitory. If the system were not confined large density defects could
allow the fragments to drift far apart, but in the restricted space of the
small container the segments eventually rejoin.
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3. STRUCTURAL RESULTS FOR THE PERIODICALLY

BOUND SYSTEM

To illustrate the results of many simulation runs, Fig. 2 shows the
configuration of the system with 1000-atoms at t∗ =0.10. For visual clarity,
we plot vertically the shift of the atoms’ lateral displacements from a uni-
form distribution, with the index of the atom as the abscissa. This gives
us a snapshot view of the exaggerated longitudinal thermal displacement
of the atom versus its number index. There are no breaks at t∗ =0.10, but
increasing the temperature to t∗ =0.12 (Fig. 3), we begin to see breaks in
the chain. One occurs just beyond atom n=200 and another near n=950.
We note that between n= 600 and 700, a stretch of the chain appears to
have an incipient break. Note, that at the break in the chain the two ends
have pulled apart leaving a space for two atoms. Because of the periodic
boundary conditions, the atom at the left end is the nearest neighbor of
the atom at the right end.

To better see how fragmentation varies with temperature, we show
several snapshots of a smaller system, 100-atoms, in Fig 4. In this shorter
chain, we had to increase the temperature to t∗ =0.13 before observing a
break. The number of segments of the chain increases with the tempera-
ture. At t∗ =0.14, the chain fragments into three clusters (see Fig. 5) and
at t∗ =0.16 there are 12 clusters (see Fig. 6).

The internal excitations of the finite chains cause fragmentation at
significantly lower temperature than the “Landau temperature” T0 in
Eq. (1). For the 1000-atom chain, we find breaks beginning at about 60%
of T0, while for 100-atoms we observe a break at 80% of T0.

Fig. 2. A snapshot of the atomic displacements from a uniform distribution, under periodic
boundary conditions, for chain length N =1000 and reduced temperature t∗ =0.10. There are
no breaks in this chain.
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Fig. 3. A snapshot of the atomic displacements from a uniform distribution, under periodic
boundary conditions, for chain length N =1000 and reduced temperature t∗ =0.12. There are
two breaks in this chain.

Fig. 4. A snapshot of the atomic displacements from a uniform distribution, under periodic
boundary conditions, for chain length N = 100 and reduced temperature t∗ = 0.13. There is
one break in this chain.

4. STRUCTURAL RESULTS AS THE SYSTEM IS WARMED

Now our basic question becomes, Are there any precursor conditions
before breakup? To address this issue, we studied 50- and 100-atom systems
in a Monte Carlo relaxation simulation. An ensemble was equilibrated at
very low temperature t∗ =0.02. The density was then decreased to ρ∗ =0.2,
so that the sample was now four-fifths empty. With this highly quenched
configuration as a starting point, the temperature was increased in inter-
vals of �t∗ = 0.01 for tens of millions of Monte Carlo steps (MCS) at
each temperature. Monitoring the pair correlation function G(r∗) at each
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Fig. 5. A snapshot of the atomic displacements from a uniform distribution, under periodic
boundary conditions, for chain length N =100 and reduced temperature t∗ =0.14. There are
two breaks in this chain.

Fig. 6. A snapshot of the atomic displacements from a uniform distribution, under periodic
boundary conditions, for chain length N =100 and reduced temperature t∗ =0.16. There are
12 breaks in this chain.

temperature from t∗ = 0.02 to 0.08, we found the highly ordered chain
to be continuous even to the endpoints (see Fig. 7), but with a mono-
tonic decrease in the amplitude of G(r∗) as the end is approached. This
decrease is due to the combined effects of finite length and finite tem-
perature. At 0 K G(r∗), would be a series of sharp spikes at the periodic
atomic positions, but the amplitude would decrease steadily with increas-
ing separation as r∗ approached the chain length. An additional decline
in correlation occurs at finite temperature, caused by thermal vibrations.
The thermal destruction of spatial order in a one-dimensional atomic
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Fig. 7. The pair correlation function G(r∗) for 100 atoms at t∗ = 0.11. The chain has free
ends. The chain is dense and ordered over its entire length without breaks. For the details of
the endpoints, see the expanded views in Figs. 8 and 9.

chain was pointed out by Peierls,(33) on the basis of a simple model of
an infinite array of identical atoms joined by the nearest-neighbor har-
monic forces. Peierls predicted that the mean squared atomic displace-
ment increases linearly with temperature T and distance. Peierls’ model
was subsequently detailed and adapted to two dimensions.(34,35) For the
one-dimensional chain,

〈(xn −nd)2〉=〈δ2
n〉=nd2kT /2mc2, (3)

where d is the interparticle spacing and c is the speed of sound. Our simu-
lation shows such a monotonic loss of positional order with particle num-
ber n, consistent with the trend of Eq. (3). For a quantitative comparison
we evaluated c for a chain of argon atoms with 6–12 LJ interactions by a
quadratic fit to the atomic potential well, and assumed c to be frequency
independent. We evaluated Eq. (3) to 〈δ2

n〉=0.034 nd2t∗. Accordingly, the
atoms near the end of a 100-atom chain are predicted to have large devia-
tions at moderate temperature. For example, at t∗ =0.08, the atom at n=
90 has a fractional rms displacement [〈δ2

n〉/d2]1/2 =0.5. This is comparable
to our simulation near the end, but not including the last few atoms of the
chain. A different mechanism increases the disorder of the endmost atoms,
as discussed in Section 5.

5. HOW THE SYSTEM DISORDERS AT A FREE END

At the end of the chain a different mechanism appears when the
temperature becomes sufficiently high; the atoms become completely
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delocalized in the last few atoms at the end. In Fig. 8 we enlarge the end
region and inspect it at three temperatures. At t∗ =0.08 the chain is dense
and has finite positional order all the way to the end, but at t∗ =0.09 the
last few atoms are completely delocalized. A one-dimensional dilute gas
is evident in the empty space beyond the chain, produced by evaporation
from the end. The changes, which are distinct from the Peierls mechanism,
are caused by the weaker binding at the ends. This “end melting” effect
is similar to the start of the premelting phenomenon at interfaces of two-
and three- dimensional matter.(36)

Simulations with 50 particles show similar behavior (Fig. 9), but the
end disordering begins at a slightly higher temperature, t∗ =0.11. We attri-
bute the difference to the size dependence of the spectrum of vibrational
excitations. Further discussion of this point is given later in the paper.

6. GROWTH AND FRAGMENTATION OF CLUSTERS

We explored the time and temperature dependence of chain growth in
a sequence of long computer runs over a range of temperatures. Each run
began with 100-atoms arranged as a well separated regular array in a fixed
volume at a low temperature, t∗ =0.02. The atoms rapidly condensed and
then more slowly grew into increasingly large clusters; the number C of
clusters decreased in a short time, and then growth progressively slowed.
The detailed evolution at reduced temperature t∗ = 0.02 can be seen in

Fig. 8. A magnified view of the pair correlation function G(r∗) for N = 100, in the end
region at t∗ = 0.08. The vapor density is too low to show any atoms in the limited vapor
space.



730 Phillips and Dash

Fig. 9. A magnified view of the pair correlation function G(r∗) for N =50 in the end region
at t∗ = 0.11 shows that some atoms have detached from the chain, to form a low density
vapor.

Table II. Progressive growth and coarsening of 100 atoms at

low temperature t * =0.02

MCS No. Clusters U/NkT

1 100 −9.177
1000 52 −23.866
5×103 49 −24.395
1×104 45 −24.862
2×104 41 −25.831
4×104 36 −27.553
8×104 32 −29.838
1×105 29 −30.477
2×105 24 −32.568
6×105 18 −35.743
2×106 16 −39.265
4×106 13 −41.058
8×106 13 −42.381
2×107 10 −43.865
4×107 7 −45.119
6×107 6 −46.151

With increasing time MCS, the atoms progressively cluster and the
average binding energy increases.

Table II and Fig. 10. We see that the decrease of C with time (MCS) is
approximately exponential over a range of four decades in time.

Cluster evolution was also studied at successively higher temperatures.
As in the run at t∗ = 0.02, at each temperature the number of clusters



Thermal Disorder, Fluctuations, Growth and Fragmentation 731

Fig. 10. Formation and growth of clusters in an ensemble of 100 atoms at low temperature
t∗ =0.02. The number of clusters C as a function of time steps.

Fig. 11. The limiting cluster size C(t∗) after growth has slowed to an imperceptible rate, as
a function of temperature.

fell rapidly at first, then progressively slowed. We continued each run until
there was no longer any perceptible change in the internal energy, which
was typically reached at tens of million MCS. The number of clusters
remaining at the termination at each temperature, designated C(t∗), is
shown in Fig. 11. We see that C(t∗) decreases to a minimum as the tem-
perature is stepped from t∗ = 0.02 to t∗ = 0.10, but C(t∗) then increases
at higher temperature. This increase is attributed to the strengthening
importance of fluctuations, which cause breakup and evaporation.
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We compare our results with studies of the growth and coarsening of
a variety of one-, two- and three-dimensional systems.(37−42) An extensive
review of mainly three-dimensional experimental and theoretical work by
Gunton et al.(37) describes typical behavior as a power law in time, an evo-
lution typically driven by a combination of interfacial energy and surface
curvature. Curvature plays no role in one-dimensional matter, but there is
a size effect due to the decreased binding at the ends. In the one-dimen-
sional studies(36−42) the models are actually two-dimensional but with one-
dimensional diffusive growth. In two of the most detailed studies(40,41) the
long time behavior is exponential, toward a maximum grain size consistent
with constraints. Our system’s trend is exponential, but with a temperature
dependent end point. The basic cause is the thermal excitations, which are
either ignored or are less important than strains, defects and wetting phe-
nomena in the previous work. In Section 7 we explore the role of excita-
tions in more detail.

7. AN EQUILIBRIUM DISTRIBUTION

As suggested above, the simulations involve a competition between
growth and dissolution. Figure 11 shows that the competition tends
toward an equilibrium statistical distribution. However, the exponentially
slowing growth rate makes it impractical to obtain the true equilibrium
distribution by extending the computer runs. An alternative employs the
free energy function of a finite chain. The rationale is that an equilibrium
distribution will have a range of chain lengths, with corresponding chemi-
cal potentials, which will range about a central value. The chemical poten-
tial of the most probable length will be at a minimum.

To derive an expression for the chemical potential of a finite chain
we begin with the general expression for a one-dimensional harmonic
solid,(34,35) which is adapted from the statistical mechanics of a bulk crys-
tal.(10) The finite length enters in two ways. First, the cohesive energy lacks
contributions from the end atoms and, depending on the specific growth law,
a portion of the interaction energy of the neighboring atoms. The second is
a more subtle effect, for it depends on the size dependence of the excitation
spectrum, which in a simple chain, are vibrational modes, The spectrum
ranges in energy down to the lowest mode, which has a wavelength equal
to twice the chain length. The effect of this length dependence is to make
longer chains less favorable, especially at high temperatures. The effect can
be quantified with an analytic expression for the chemical potential.

For simplicity we use a Debye approximation, which assumes a fre-
quency independent sound speed. The spectrum of a chain of n atoms
extends from a maximum frequency ω to the lowest frequency ω/n. With
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specific parameters for argon with LJ interactions, we find that the major
terms in n and t∗

µ(n,T )=−0.47ε −3.2ε n−5 −2.93εt∗2[1−1/(1−n)2]. (5)

With Eq. (5), we obtain the most probable length neq as a function of
temperature as the value at which µ is a minimum:

(neq −1)3/n6
eq =0.37 (t∗)2. (6)

Equation (6) predicts that neq diverges only t∗ = 0, consistent with
the fundamental prohibition of condensed macroscopic one-dimensional
phases at finite temperature.(10−13) But Eq. (6) shows that finite chains
can exist at finite temperature, and that neq steadily decreases as t∗ rises.
Table III lists some sample sets of neq and t∗ computed from Eq. (6).
The equilibrium temperatures are much lower than the Landau tempera-
ture kT0/e for any given size. The difference is due to the great importance
of thermal excitations in reducing the stability of long chains, whereas
thermal excitations are not included in the Landau argument.

8. CONCLUSIONS

We have studied two types of finite linear systems by Monte Car-
lo simulation. For the first, we used periodic boundary conditions to
investigate how a stochastic model of a finite linear system begins to break
into segments. We generated canonical ensemble averages for the thermal
and structural properties as well as snap shots of the configurations. Our
model demonstrates that relatively small segments of the chains are quite
stable and ordered at low temperatures. At reduced temperatures t∗ =0.10
and below, chains of 1000-atoms are free of spontaneous breaks, and clus-
ters of 100-atoms at t∗ = 0.12 are also free of breaks. As temperature

Table III. Equilibrium lengths of one-

dimensional atomic chains

neq t∗

100 0.00165
50 0.0047
20 0.0171
10 0.0446
5 0.106
4 0.134
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rises above these values, the number of breaks increases. The lack of a
condensed phase in the thermodynamic limit is consistent with theory, but
finite length chains survive to appreciable temperatures.

In the second type of simulation we studied finite segments with free
ends. In these systems at temperatures too low for breakup the ends dis-
order while the main body of the cluster remains dense and continuous.
At these temperatures the chain has an appreciable vapor pressure, hence
one sees that the chain coexists with a one-dimensional gas. The end dis-
order occurs at temperatures dependent upon the number of atoms in the
cluster. In the one hundred atom clusters this occurs between t∗ =0.08 and
0.09. In 50-atom clusters the endpoint disordering temperature is between
t∗ = 0.10 and 0.11. This variation results from the length dependence of
the lower bound of the spectrum of vibrational modes. The simulations
show an evolution toward larger clusters at low to moderate temperature,
but at higher T fragmentation occurs, due to the increasing strength of
fluctuations.

We obtain the true equilibrium state analytically, from an explicit for-
mula for chemical potential. In a large population of atoms in thermal
equilibrium, there will be a distribution of clusters of different lengths,
ranging about a most probable length at which the chemical potential is a
minimum. The thermal distribution recalls the aggregation of one-dimen-
sional rods of biological molecules,(43,44) and the thermodynamic princi-
ples are similar.

This study suggests the variety of behavior that may be seen in exper-
iments on adsorbed systems that are effectively one-dimensional.
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